skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cimen, Furkan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Predicting short-term traffic volume is essential to improve transportation systems management and operations (TSMO) and the overall efficiency of traffic networks. The real-time data, collected from Internet of Things (IoT) devices, can be used to predict traffic volume. More specifically, the Automated Traffic Signal Performance Measures (ATSPM) data contain high-fidelity traffic data at multiple intersections and can reveal the spatio-temporal patterns of traffic volume for each signal. In this study, we have developed a machine learningbased approach using the data collected from ATSPM sensors of a corridor in Orlando, FL to predict future hourly traffic. The hourly predictions are calculated based on the previous six hours volume seen at the selected intersections. Additional factors that play an important role in traffic fluctuations include peak hours, day of the week, holidays, among others. Multiple machine learning models are applied to the dataset to determine the model with the best performance. Random Forest, XGBoost, and LSTM models show the best performance in predicting hourly traffic volumes. 
    more » « less
  2. A smart home with a controller that can understandand predict the interaction between the external environment and the user’s behavior and preferences can provide significant energy efficiency and savings. Unfortunately, experimentation of real world homes for the development of such a controller is prohibitively expensive. In this paper we describe techniques through which such experiments can be performed on scaled testbed with an accelerated time. We illustrate how the modeling of different geographical areas can be performed by the mapping of the model’s temperature and time to their real-world equivalents. We train three different machine learning models for predicting different sensor readings in the testbed, and find that the achieved predictive accuracy supports the feasibility of the development of future smart climate controllers. 
    more » « less